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Abstract. We study the time evolution of the Hamming distance of two configurations by 
Monte Carlo simulation, differing only by the central spin, of the * J  3D Ising spin glass. 
We observe two temperature regimes: a high-temperature one where the damage readily 
spreads and a low-temperature one where the spreading of damage is hindered. The critical 
temperature numerically coincides with the spin-glass temperature found by Monte Carlo 
simulation. 

Spin glasses are complex physical systems with dynamic and static effects which have 
been observed experimentally (for a review on spin glasses see [I]). The dynamic 
aspects (remanent magnetisation, the susceptibility cusp shift with the frequency of 
the AC field, etc) due to relaxation effects, suggested for many years that spin glasses 
did not have a true thermodynamic phase, but only a dynamic one. Recently, however, 
heavy computational effort [2] and phenomenological scaling arguments at zero tem- 
perature [3] suggested a true phase transition. We intend here to make a study of the 
dynamics of the spin glass by analysing the temporal evolution of the Hamming distance 
between two configurations of the *.T three-dimensional Ising spin glass and its ‘total 
damage’ time. Early works [4-61 studying the propagation of a small damage in 
magnetic systems (spreading of damage) have shown a strong correlation between the 
frozen phase and the thermodynamic one. As the freezing temperature obtained here 
practically coincides with the best known result for the spin glass temperature we also 
support this correlation. 

The spreading of damage was investigated in the 2~ Ising model and in the Q2R 
by Stanley et a1 [4] using Glauber dynamics. They found a critical temperature equal 
to the Curie temperature (Tc) .  Costa [ 5 ]  studied the spreading of damage in the 3~ 
Ising model (Glauber dynamics) and found T* = 0.96Tc (the threshold temperature 
between the chaotic and frozen phases). He speculates that previous coincidences of 
these temperatures may have been fortuitous, as one transition is static and the other 
is dynamic and is not understood [7]. 

Derrida and Weisbuch [6] (henceforth referred to as DW) investigated spreading 
of damage in the 3~ * J  Ising spin glass, using heat bath dynamics. Besides the usual 
small damage spreading they also studied the cases where the spins are randomly 
orientated on both systems and also the case where the two systems are exactly inverted. 
They found three temperature regimes: a high-temperature one where the long-times 
Hamming distance of the three cases is zero, an intermediate-temperature one where 
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the Hamming distances are the same and non-zero, and a low-temperature one where 
the Hamming distances are different. The threshold temperatures are TI = 1.8J and 

So far, spreading of damage has been done exclusively through computer experi- 
ments. The method is as follows: take a system configuration (A) in equilibrium at a 
given temperature; make a copy of it (B); introduce a ‘damage’, by changing the state 
of one or more of the sites; treat both systems in the same way using the same algorithm 
and using the same random numbers; study the temporal evolution of the damage. 
This process is then repeated for a set of temperature values. 

Some quantities are used to measure the damage. One of them is the Hamming 
distance (M), which measures the extent of the damage at a given time. It is defined 
as the fraction of the sites that are different in the two lattices. Another quantity is 
total damage time. It is defined as the time required for all the sites to have been 
damaged at least once. This is a good quantity to distinguish the phase where the 
damage spreads freely (chaotic) from the one in which it is hindered (frozen). 

One interesting point is the radical difference between the results obtained by DW 

and by Costa. As an example, the high-temperature Hamming distance is zero in DW, 
while in Costa it is f. 

A detailed study by Stauffer [8] offered an explanation for this divergence. At first 
sight there is very little difference between the ‘heat bath’ dynamics and the Glauber 
dynamics. 

In the Glauber dynamics a spin is flipped with probability exp( -PA,!?)/( 1 + 
exp(-pAE)), where AE =2Si Z JUSj is the energy difference between the new and old 
configurations. Defining kBhi = I: JvSj, the spin is then flipped with probability p = 
1/[ 1 + exp(2hiSi/ T)] and remains unchanged with probability 1 - p  = 
l/[l+exp(-hiSi/T)]. Therefore is S , = l ,  then it will flip to -1 with probability 
1/[1 +exp(+2hi/T)], and remain 1 with probability 1/[1 +exp(-2hi/ T)], while, if 
S1=-l, then it will remain -1  with probability 1/[1+exp(+2hi/T)], and flip to 1 
with probability I/[ 1 + exp( -2hJ T)]. 

In the heat bath dynamics the spin becomes 1 with probability 1/[ 1 + exp( -2hiSi/ T ) ]  
and becomes -1 with probability 1/[1 +exp(+2hiSi/ T)], regardless of the original 
value of the spin. It is easy to see that this is entirely equivalent to the previous case. 

The difference, therefore, does not lie in the probabilities, but in how the random 
numbers are used. To see the difference, let us take a particular example. Let us assume 
that a given site in the lattice A, S f =  1, and in lattice B, SB= -1, but h f =  h e .  Now 
SA will flip with probability p = 1/[ 1 + exp(+2hi/ T ) ] ,  while SB will flip with probability 
1 - p  = 1/[1 +exp(-2hi/ T ) ] .  In both cases a random number z is obtained. In the 
Glauber dynamics S f  flips from 1 to -1  if and only if z < p  and SB flips from 1 to -1 
if and only if z c 1 - p .  In the heat bath dynamics SA flips from 1 to -1 if and only 
if z < p  and S? flips from 1 to -1  if and only if z > p. Therefore, in the case of the 
Glauber dynamics three possibilities exist: ( a )  z <min(l  - p ,  p) both spins flip; (b) 
min(1 - p ,  p) < z < max(p, 1 - p )  one spin flips; (e) max( 1 - p ,  p) < z no spin flips. On 
the other hand, in the heat bath case there are only two possibilities: (a) z < p  SA flips; 
(b) z > p  SF flips. Therefore one and only one always flips and the result is always 
that they become equal. This effect is particularly striking at high temperatures when 
p = 1 - p  = f. Here option (b) for Glauber dynamics does not apply so that either both 
spins flip or both do not, so that they remain different. For the heat bath dynamics 
one must flip and they must become equal. The conclusion is then that at high 
temperatures the configurations will become more and more similar with the heat bath 

T2 = 4.1 J. 
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dynamics, while they will become, slowly, more and more different with Glauber 
dynamics. 

Apart from the usual one-site damage, other drastically different initial conditions 
can be considered, such as: (a) reversed lattices (M = 1); (b) both lattices random 
(M = i). While using Glauber dynamics, however, they only produce trivial results. 
Case (a) will remain M = 1, for all times, for all temperatures, because the equivalent 
sites on both lattices will yield the same value of p, and if z < p  both flip, otherwise 
both remain unaltered, so that M continues to be 1. It can also be argued that in case 
(b) M will remain close to 3. At high temperatures this is beyond question. At low 
temperatures, if one accepts that the distribution of ground levels in the phase space 
is reasonably uniform, there should be one not too far from the system starting point 
and the Hamming distance should be f, on average. We have actually checked that 
and M is very close to 4. We see, then, that the large interval of temperatures for 
which the Hamming distance is independent of the initial conditions found by DW is 
not repeated here, showing that this feature is dependent on the dynamics used. 

We have applied the Glauber dynamics for the *.I 3~ Ising spin glass and, as 
expected, we obtained results consistent with Costa and different from DW. We started 
with a fairly small system (lo3 sites). To calculate the Hamming distance, only the 
surviving samples (i.e., those whose Hamming distance did not become zero) were 
used. For each temperature we make the configurational average of the temporal 
evolution of the Hamming distance. This temporal evolution presents a transient stage 
and after a temperature-dependent time t* it seems to oscillate only around the mean 
value. The value of the Hamming distance is then obtained by taking a time average 
of the values for times later than t * .  Figure 1 shows the Hamming distance plotted 

0 1 2 3 
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Figure 1. Hamming distance plotted against temperature. At low temperature it decreases 
and seems to go to zero at T = O .  At higher temperatures it rises to reach a plateau at 
the value 4. 
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against temperature. At low temperature it decreases and seems to go to zero at T = 0. 
At higher temperatures it rises to reach a plateau at the value f. This seems to be 
physically justifiable, because, since the spins are totally uncorrelated at high 
temperatures, we should expect that, on average, half of the spins should be different at a 
given time. 

To obtain the mean total damage time we have performed a configurational average, 
over at least 60 samples, for each temperature. We have also calculated the median 
of the total damage time and verified that it coincides with the mean practically at all 
temperatures. Therefore, we used the median for T G  1.1 T, (we use T,= 1.25, from 
[2]), because there were samples which had not reached the total damage with 20 000 
time steps, which was the largest value used. For higher temperatures we used the mean, 
because it gives error bars. This result is depicted in figure 2. We can see that it goes 
to infinity both at infinite temperature and at and below the freezing temperature. We 
reached the conclusion that T* is close to T,. We can identify only two regimes here: 
one above T*, where the damage can readily spread and another below it, where it is 
hindered. In fact, this divergence of the total damage seems to be a good indication 
of a phase transition. The connection between the threshold temperature in spreading 
of damage with percolation suggested by Costa for the ferromagnetic case, is not clear 
[7] in our case and deserves further consideration. At infinite temperature, as we have 
already argued, the flip probability is f (regardless of the state of its neighbours), and 
either the spins on the two lattices flip together or remain as they were together. 
Therefore the initial damage remains the only one and the whole lattice can never be 
completely damaged. 

Although there is still work to be done, it seems safe to reach the conclusion that 
there are two and not three phases in the 3~ Ising spin glass, using Glauber dynamics. 

0 0.2 0.4 06 0 8  1.0 1 2  
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Figure 2. Inverse total damage t h e  plotted against inverse temperature. We can identify 
two regimes here: one above T', where the damage can readily spread, and another below 
it, where it is hindered. 
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Also T*, if not at it, is very close to TF (critical temperature for the spin glass, obtained 
by Bhatt and Young and by Ogielsky and Morgenstein [2]). It becomes obvious that 
the details of the dynamics used are averaged out and give the same results in many 
cases, but this is certainly not so here. 

We are grateful for the extremely profitable discussions with Professor Dietrich Stauff er. 
This work was partially supported by CNPq and FINEP (Brazilian Agencies). 
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